68 research outputs found

    Spectrum imaging of complex nanostructures using DualEELS: I. digital extraction replicas

    Get PDF
    This paper shows how it is possible to use Dual Electron Energy Loss Spectroscopy (DualEELS) to digitally extract spectrum images for one phase of interest in a complex nanostructured specimen. The specific cases studied here concern Nb or V precipitates, a few nanometres in size, in high manganese steels. The procedures outlined allow the extraction of the precipitate signal from the Fe–Mn matrix, as well as correction for surface oxide and any surface carbon contamination. The resulting precipitate-only spectrum images are then suitable for quantitative analysis of the precipitate chemistry. This procedure results in much improved background shapes under all edges of interest, mainly as a result of the removal of the extended electron loss fine structure (EXELFS) from the elements in the matrix. This allows the reliable extraction of even tiny quantities of elements, such as low levels of nitrogen in some carbide precipitates. As well as being relevant to precipitation in steels, these techniques will be widely applicable to the separation of chemically-distinct phases in complex nanostructured samples, and can be viewed as a digital version of the extraction replica technique

    EELS at very high energy losses

    Get PDF
    Electron energy-loss spectroscopy (EELS) has been investigated in the range from 2 to >10 keV using an optimized optical coupling of the microscope to the spectrometer to improve the high loss performance in EELS. It is found that excellent quality data can now be acquired up until about 5 keV, suitable for both energy loss near edge structure (ELNES) studies of oxidation and local chemistry, and potentially useful for extended energy loss fine structure (EXELFS) studies of local atomic ordering. Examples studied included oxidation in Zr, Mo and Sn, and the ELNES and EXELFS of the Ti-K edge. It is also shown that good quality electron energy-loss spectroscopy can even be performed for losses above 9.2 keV, the energy loss at which the collection angle becomes ‘infinite’, and this is demonstrated using the tungsten L3 edge at about 10.2 keV

    Getting the most out of a post-column EELS spectrometer on a TEM/STEM by optimising the optical coupling

    Get PDF
    Ray tracing is used to find improved set-ups of the projector system of a JEOL ARM 200CF TEM/STEM for use in coupling it to a Gatan 965 Quantum ER EELS system and to explain their performance. The system has a probe aberration corrector but no image corrector. With the latter, the problem would be more challenging. The agreement between the calculated performance and that found experimentally is excellent. At 200kV and using the 2.5mm Quantum entrance aperture, the energy range over which the collection angle changes by a maximum of 5% from that at zero loss has been increased from 1.2keV to 4.7keV. At lower accelerating voltages, these energy ranges are lower e.g. at 80kV they are 0.5keV and 2.0keV respectively. The key factors giving the improvement are an increase in the energy-loss at which the projector cross-over goes to infinity and a reduction of the combination aberrations that occur in a lens stack. As well as improving the energy-loss range, the new set-ups reduce spectrum artefacts and minimise the motion of the diffraction pattern at low STEM magnification for electrons that have lost energy. Even if making the pivot points conjugate with the film plane gives no motion for zero-loss electrons, there will be motion for those electrons that have lost energy, leading to a false sense of security when performing spectrum imaging at low magnifications. De-scanning of the probe after the objective lens is a better way of dealing with this problem

    Accurate measurement of absolute experimental inelastic mean free paths and EELS differential cross-sections

    Get PDF
    Methods are described for measuring accurate absolute experimental inelastic mean free paths and differential cross-sections using DualEELS. The methods remove the effects of surface layers and give the results for the bulk materials. The materials used are VC0.83,TiC0.98,VN0.97and TiN0.88but the method should be applicable to a wide range of materials. The data were taken at 200 keVusing a probe half angle of 29mradand a collection angle of 36mrad. The background can be subtracted from under the ionisation edges, which can then be separated from each other. This is achieved by scaling Hartree-Slater calculated cross-sections to the edges in the atomic regions well above the threshold. The average scaling factors required are 1.00 for the non-metal K-edges and 1.01 for the metal L-edges (with uncertainties of a few per cent). If preliminary measurements of the chromatic effects in the post-specimen lenses are correct, both drop to 0.99. The inelastic mean free path for TiC0.98 was measured as 103.6±0.5 nm compared to the prediction of 126.9 nm based on the widely used Iakoubovskii parameterisation

    The atomic structure and chemistry of Fe-rich steps on antiphase boundaries in Ti-doped Bi<sub>0.9</sub>Nd<sub>0.15</sub>FeO3

    Get PDF
    Stepped antiphase boundaries are frequently observed in Ti-doped Bi&lt;sub&gt;0.85&lt;/sub&gt;Nd&lt;sub&gt;0.15&lt;/sub&gt;FeO&lt;sub&gt;3&lt;/sub&gt;, related to the novel planar antiphase boundaries reported recently. The atomic structure and chemistry of these steps are determined by a combination of high angle annular dark field and bright field scanning transmission electron microscopy imaging, together with electron energy loss spectroscopy. The core of these steps is found to consist of 4 edge-sharing FeO&lt;sub&gt;6&lt;/sub&gt; octahedra. The structure is confirmed by image simulations using a frozen phonon multislice approach. The steps are also found to be negatively charged and, like the planar boundaries studied previously, result in polarisation of the surrounding perovskite matrix

    Spectrum imaging of complex nanostructures using DualEELS: II. Absolute quantification using standards

    Get PDF
    Nanometre-sized TixV(1−x)CyNz precipitates in an Fe20%Mn steel matrix with a thickness range from 14 to 40 nm are analysed using DualEELS. Their thicknesses, volumes and compositions are quantified using experimental binary standards and the process used to give robust results is described. Precisions of a few percent are achieved with accuracies that are estimated to be of a similar magnitude. Sensitivities are shown to be at 0.5–1 unit cells range in the thinnest matrix region, based on the assumption that a sub-lattice is fully populated by the element. It rises to the 1–2 unit cell range for the metals and 2–3 unit cells for the non-metal in the thickest matrix region. The sensitivities for Ti and N are greater than those for V and C respectively because the O K-edge from surface oxide needs to be separated from the V L2,3-edge, and the C K-edges from C in the matrix and amorphous C on the surface have to be separated from the C in the precipitate itself. Separation of the contributions from the bulk and the surface is demonstrated, showing that there is significant and detectable C in the matrix but no O, while there is significant O but little C in the surface oxide. Whilst applied to precipitates in steel in this work, the approach can be adapted to many multi-phase systems

    Linear chemically sensitive electron tomography using DualEELS and dictionary-based compressed sensing

    Get PDF
    We have investigated the use of DualEELS in elementally sensitive tilt series tomography in the scanning transmission electron microscope. A procedure is implemented using deconvolution to remove the effects of multiple scattering, followed by normalisation by the zero loss peak intensity. This is performed to produce a signal that is linearly dependent on the projected density of the element in each pixel. This method is compared with one that does not include deconvolution (although normalisation by the zero loss peak intensity is still performed). Additionaly, we compare the 3D reconstruction using a new compressed sensing algorithm, DLET, with the well-established SIRT algorithm. VC precipitates, which are extracted from a steel on a carbon replica, are used in this study. It is found that the use of this linear signal results in a very even density throughout the precipitates. However, when deconvolution is omitted, a slight density reduction is observed in the cores of the precipitates (a so-called cupping artefact). Additionally, it is clearly demonstrated that the 3D morphology is much better reproduced using the DLET algorithm, with very little elongation in the missing wedge direction. It is therefore concluded that reliable elementally sensitive tilt tomography using EELS requires the appropriate use of DualEELS together with a suitable reconstruction algorithm, such as the compressed sensing based reconstruction algorithm used here, to make the best use of the limited data volume and signal to noise inherent in core-loss EELS

    Column ratio mapping: a processing technique for atomic resolution high angle annular dark field(HAADF) images

    Get PDF
    An image processing technique is presented for atomic resolution high-angle annular dark-field (HAADF) images that have been acquired using scanning transmission electron microscopy (STEM). This technique is termed column ratio mapping and involves the automated process of measuring atomic column intensity ratios in high-resolution HAADF images. This technique was developed to provide a fuller analysis of HAADF images than the usual method of drawing single intensity line profiles across a few areas of interest. For instance, column ratio mapping reveals the compositional distribution across the whole HAADF image and allows a statistical analysis and an estimation of errors. This has proven to be a very valuable technique as it can provide a more detailed assessment of the sharpness of interfacial structures from HAADF images. The technique of column ratio mapping is described in terms of a [1 1 0]-oriented zinc-blende structured AlAs/GaAs superlattice using the 1 Ã…-scale resolution capability of the aberration-corrected SuperSTEM 1 instrument

    Experimental evaluation of interfaces using atomic-resolution high angle annular dark field (HAADF) imaging

    Get PDF
    Aberration-corrected highangleannulardarkfield (HAADF) imaging in scanning transmission electron microscopy (STEM) can now be performed at atomic-resolution. This is an important tool for the characterisation of the latest semiconductor devices that require individual layers to be grown to an accuracy of a few atomic layers. However, the actual quantification of interfacial sharpness at the atomic-scale can be a complicated matter. For instance, it is not clear how the use of the total, atomic column or background HAADF signals can affect the measured sharpness or individual layer widths. Moreover, a reliable and consistent method of measurement is necessary. To highlight these issues, two types of AlAs/GaAs interfaces were studied in-depth by atomic-resolutionHAADFimaging. A method of analysis was developed in order to map the various HAADF signals across an image and to reliably determine interfacial sharpness. The results demonstrated that the level of perceived interfacial sharpness can vary significantly with specimen thickness and the choice of HAADF signal. Individual layer widths were also shown to have some dependence on the choice of HAADF signal. Hence, it is crucial to have an awareness of which part of the HAADF signal is chosen for analysis along with possible specimen thickness effects for future HAADF studies performed at the scale of a few atomic layers

    Structure of eukaryotic purine/H(+) symporter UapA suggests a role for homodimerization in transport activity

    Get PDF
    The uric acid/xanthine H(+) symporter, UapA, is a high-affinity purine transporter from the filamentous fungus Aspergillus nidulans. Here we present the crystal structure of a genetically stabilized version of UapA (UapA-G411VΔ1-11) in complex with xanthine. UapA is formed from two domains, a core domain and a gate domain, similar to the previously solved uracil transporter UraA, which belongs to the same family. The structure shows UapA in an inward-facing conformation with xanthine bound to residues in the core domain. Unlike UraA, which was observed to be a monomer, UapA forms a dimer in the crystals with dimer interactions formed exclusively through the gate domain. Analysis of dominant negative mutants is consistent with dimerization playing a key role in transport. We postulate that UapA uses an elevator transport mechanism likely to be shared with other structurally homologous transporters including anion exchangers and prestin
    • …
    corecore